

TUTORIAL MODELLING SHELLS

All information in this document is subject to modification without prior notice. No part of this manual may be reproduced, stored in a database or retrieval system or published, in any form or in any way, electronically, mechanically, by print, photo print, microfilm or any other means without prior written permission from the publisher. SCIA is not responsible for any direct or indirect damage because of imperfections in the documentation and/or the software.

© Copyright 2021 SCIA nv. All rights reserved.

Table of Contents

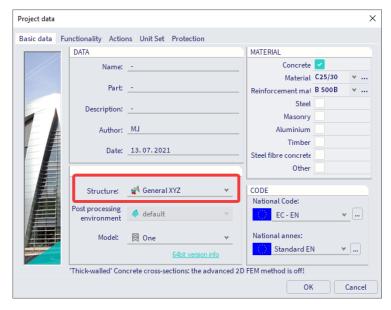
Introduction	4
Shell commands	5
Shells	5
Shell command	6
Shell – surface of revolution command	7
Shell – swept surface	9
Shell template	10

Introduction

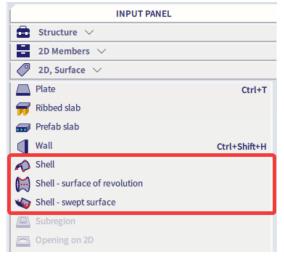
In SCIA Engineer, shells are defined by border lines (i.e., border curves). The shape of the shell can be defined by four, three or two curves/straight lines. Some shapes require certain "mathematical imagination" when they are created. Therefore, basic shapes have been pre-created in the form of templates and can be easily inputted through user blocks.

You can model shells by using:

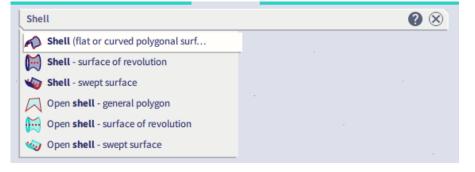
- Shell command
- Shell surface of revolution command
- Shell swept surface command
- Shell template


Depending on the shell element, you can choose the optimal way of modelling the shell.

This tutorial will explain the different ways of inputting shells while discussing a simple example.


Shell commands

Shells


To start modelling shells, make sure the Structure is set to 'General XYZ' in the Project data:

In the input panel, you will find the shell commands under Structure > 2D Members:

You can also type the command in the SCIA Spotlight:

Shell command

The first way of inputting a shell element is by using the shell command. Once this option is selected, you can set the parameters of the shell element:

Leinen ype Standard FEM Element behaviour Standard FEM Type shell (98) ✓ Material C25/30 ✓ FEM nonlinear model Isotropic ✓ FEM nonlines type constant Thickness (pm) 200 Member system-plane at Centre ✓ Eccentricity z (mm) 0 LCS type Standard ✓ Swap orientation no LCS angle (deg) 0,00	Element type Standard Element behaviour Standord FEM Type shell (98) Material C25/30 ↓ FEM model isotopic FEM nonlinear model none Thickness type constant Thickness type constant Thickness type constant Thickness type standard Z LCS type Standard Swap orientation no	>
Element behaviour Standard FEM Type shell (98)	Element behaviour Standard FEM Type shell (08) Material C25/30 FEM model Isotropic FEM model Isotropic FEM nonlinear model none Thickness fymm] 200 Member system-plane at Centre Eccentricity z (mm) 0 ICS type Standard Swap orientation no	
Type shell (98) ~ Material C25/30 ~ EZ T FEM nonlinear model none ~ Thickness type constant ~ Thickness type constant ~ Thickness type constant ~ Constant ~ Constant ~ Thickness type constant ~ Constant ~ Constant ~ Thickness type constant ~ Consta	Type shell (98) Material C25/30 V FEM model Isotropic PEZ PZ Z Z Z Z Z Member system-plane at Centre Centre Centricity z (mm) 0 CLCS type Standard Swap orientation NO	~
A Material C25/30 ✓ FEM model Isotropic ✓ FEM nonlinear model none ✓ ✓ Thickness (pre constant Thickness (prem) 200 Member system-plane at Centre ✓ Eccentricity z (mm) 0 LCS type Standard ✓ Swapo prioritation no LCS angle (deg) 0,00	A Material (25/30) V FEM model Isotropic FEM nonlinear model none Thickness type constant Thickness type constant Thickness type constant Constant Thickness type Z LCS type Swap orientation no	
Image: Constant system - plane at Centre V FZ Image: Constant system - plane at Centre V <	FEM model Isotropic ez FEM nonlinear model none Thickness type constant Thickness [mm] 200 Member system-plane at Centre Eccentricity z [mm] 0 LCS type Swap orientation no	*
ez FEM nonlinear model none	Ez FEM nonlinear model none Thickness type constant Thickness from 200 Member system-plane at Centre Eccentricity z [mm] Z LCS type Swap orientation no	×
Z Thickness type constant Thickness (mm) 200 Member system-plane at Centre V Eccentricity z (mm) 0 LCS type Standard v Swap orientation no LCS angle (deg) 0,00 0	EZ Thickness type constant Thickness (mm) 200 Member system-plane at Centre Eccentricity z (mm) 0 Z LCS type Standard Swap orientation no	~
Thickness (pm) 200 Thickness (pm) 200 Member system-plane at Centre Controlity 2 (pm) 0 LCS type Standard v Swap orientation no LCS angle [deg] 0,00	Thickness type constant Thickness [mm] 200 Member system-plane at Centre Eccentricity z [mm] 0 Z LCS type Standard Swap orientation no	~
Image: Member system-plane at Centre V Eccentricity z (mm) 0 LCS type Standard V Swap orientation no X LCS angle (deg) 0,00	Member system-plane at Centre Eccentricity z [mm] Z LCS type Swap orientation no	
Z Eccentricity z [mm] 0 LCS type Standard Swap orientation no X LCS angle [deg] 0,00	Eccentricity z [mm] 0 Z LCS type Swap orientation no	
Z LCS type Standard v X Y LCS angle [deg] 0,00	Eccentricity z [mm] 0 Z LCS type Swap orientation no	~
X Y LCS angle [deg] 0,00	Swap orientation no	
X Y LCS angle [deg] 0,00	Swap orientation no	*
X Y LCS angle [deg] 0,00		
		×
Structural model		

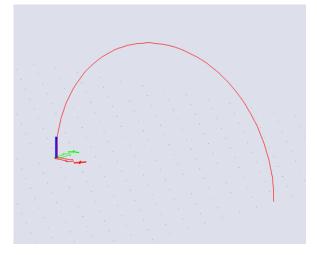
After you confirm with OK, you can input the vertices of the polygon. Keep in mind that you can use the snap points, coordinates, or the shortcuts in the SCIA Spotlight:

New shell member - New po	lygon	- Starl	t point	>								
	7	C	\land	Δ	S	М	\odot	0	5	J	4	4

If the defined polygon is not closed, the program tries to close it automatically.

<u>Tip:</u> If you want to define a curved 2D member, it may be very useful to input the shape-defining curves in advance as normal lines (service Structure > Modelling/Drawing > Line)

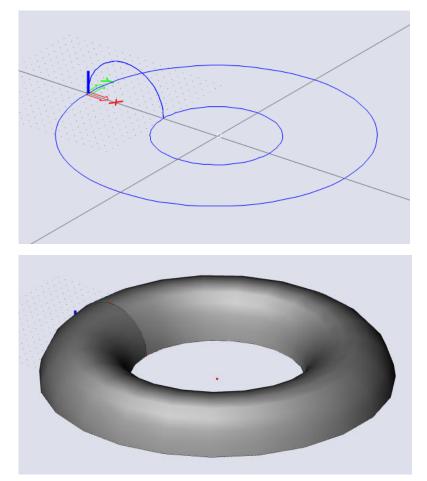
2D MEMBER (1) ¥ 😫 Name S1 Layer Layer1 \vee = Element type Standard \smallsetminus Element behaviour ~ Standard FEM \sim Type shell (98) 🗸 Shape Curved Material C25/30 \vee = FEM model ~ Isotropic \sim FEM nonlinear model none V Thickness type \quad constant \sim Thickness [mm] 200,00 Member system-plane at ~ Centre \sim Eccentricity z [mm] 0,00 LCS type Standard \sim Swap orientation Ξ LCS angle [deg] 0,00


This option can be used to model a general shell:

However, it is possible to use special functions for the input of a surface of revolution and swept surface.

Shell – surface of revolution command

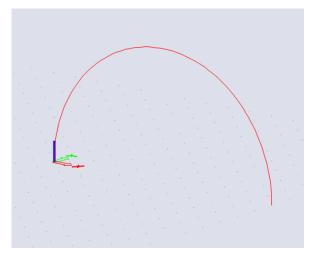
This next option allows you to model a shell where you first need to define a line/curve. The following step is to input a certain angle which then allows you to rotate the line/curve along this angle to create a shell element.


To start, select the option Shell – surface of revolution and set the parameters. Next, input the line/curve. For example, a circular arc. This can be done more easily by using the shortcuts in the command line:

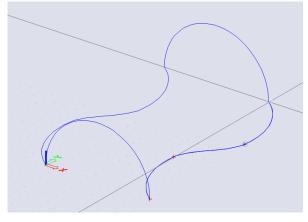
Once the line/curve is modelled, confirm with [Esc]. Next, a dialogue opens where you can input the rotation angle and axis:

Rotation angle and axis X							
ROTATION							
Angle	360,00	deg					
AXIS VECTOR							
Working plane axis X Working plane axis Y Working plane axis Z Define axis by cursor Enter custom axis vector							
CUSTOM AXIS	VECTOR						
x	0,000	m					
y	0,000	m					
z	0,000	_ m					
ſ	ок	Cancel					

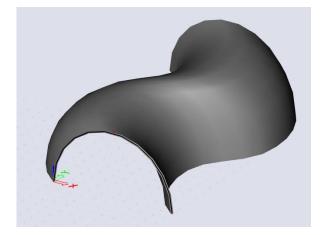
Confirm with [OK] and define the centre of rotation to complete the modelling of the shell:



<u>Tip</u>: Set the coordinate system in the correct location to simplify the input of the rotation. For example, when you know a rotation needs to be done around a certain vertical vector, change the coordinate system to that location with the z-axis pointing upwards. This way you can input the rotation around the working plane axis Z in the origin.


Shell – swept surface

When modelling a shell using swept surface, again you first define a line/curve. The next step is to input another curve along which the master curve will be swept.


To start, select the option Shell – swept surface and set the parameters. Next, input the master line/curve. For example, a circular arc:

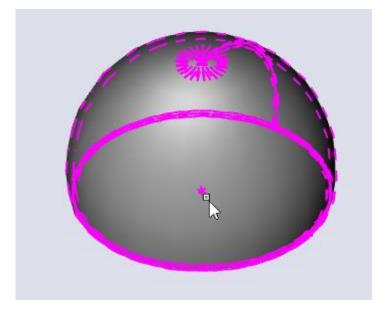
Once the master line/curve is inputted, confirm with [Esc] and start inputting the next curve. This curve will direct the master line/curve along a path to create a shell element:

Confirm again with [Esc] to input the shell element:

Shell template

The final option of inputting a shell element, is by using predefined shell elements. These can be found in the Input panel under Structure > Import & Blocks or in the SCIA Spotlight by typing 'Predefined shapes':

💼 Structure 🗸	
Import & Blocks 🗸	
🥔 2D, Surface 🗸	
Catalog blocks	
Ser blocks	
Predefined shapes	
Import project from esa file	
Predefined shapes	
Predefined shapes	


Here, you can select a predefined shape and change some of the parameters:

Predefined shapes				×
Predefined shapes Concrete Shells Steel Volume	Cap-hemisphere	Cap-spherical	Cap	
	Cone-sector	Cone-truncated	Cone	
	C:\Program Files\S0		edefinedShapes\Sh	ells\elbowESA
			ОК	Cancel

For example, inputting a cap:

Parameters of block	X
Parameters	
H - [m] 5,00 r1 - [m] 4,00 S2 - Ves	SAMPLE PICTURE
	DESCRIPTION
RR	
	OK Cancel Apply

After setting the parameters, confirm with [OK] and select where you want to input the block:

